Efficient transition to growth on fermentable carbon sources in Saccharomyces cerevisiae requires signaling through the Ras pathway.

نویسندگان

  • Y Jiang
  • C Davis
  • J R Broach
چکیده

Strains carrying ras2(318S) as their sole RAS gene fail to elicit a transient increase in cAMP levels following addition of glucose to starved cells but maintain normal steady-state levels of cAMP under a variety of growth conditions. Such strains show extended delays in resuming growth following transition from a quiescent state to glucose-containing growth media, either in emerging from stationary phase or following inoculation as spores onto fresh media. Otherwise, growth of such strains is indistinguishable from that of RAS2(+) strains. ras2(318S) strains also exhibit a delay in glucose-stimulated phosphorylation and turnover of fructose-1,6-bisphosphatase, a substrate of the cAMP-dependent protein kinase A (PKA) and a key component of the gluconeogenic branch of the glycolytic pathway. Finally Tpk(w) strains, which fail to modulate PKA in response to fluctuations in cAMP levels, show the same growth delay phenotypes, as do ras2(318S) strains. These observations indicate that the glucose-induced cAMP spike results in a transient activation of PKA, which is required for efficient transition of yeast cells from a quiescent state to resumption of rapid growth. This represents the first demonstration that yeast cells use the Ras pathway to transmit a signal to effect a biological change in response to an upstream stimulus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The G protein-coupled receptor gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae.

Pseudohyphal differentiation in the budding yeast Saccharomyces cerevisiae is induced in diploid cells in response to nitrogen starvation and abundant fermentable carbon source. Filamentous growth requires at least two signaling pathways: the pheromone responsive MAP kinase cascade and the Gpa2p-cAMP-PKA signaling pathway. Recent studies have established a physical and functional link between t...

متن کامل

Cisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiae

Objective(s): To understand the role of mitochondrial respiration in cisplatin sensitivity, we have employed wild-type and mitochondrial DNA depleted Rho0 yeast cells. Materials and Methods: Wild type and Rho0 yeast cultured in fermentable and non-fermentable sugar containing media, were studied for their sensitivity against cisplatin by monitoring growth curves, oxygen consumption, pH changes ...

متن کامل

Metabolic phenotypes of Saccharomyces cerevisiae mutants with altered trehalose 6-phosphate dynamics.

In Saccharomyces cerevisiae, synthesis of T6P (trehalose 6-phosphate) is essential for growth on most fermentable carbon sources. In the present study, the metabolic response to glucose was analysed in mutants with different capacities to accumulate T6P. A mutant carrying a deletion in the T6P synthase encoding gene, TPS1, which had no measurable T6P, exhibited impaired ethanol production, show...

متن کامل

Characteristics of Different Brewer’s Yeast Strains Used for Non-alcoholic Beverage Fermentation in Media Containing Different Fermentable Sugars

Fermentation characteristics of four strains of brewer's yeast (Saccharomyces cerevisiae strain 70424, S.rouxii strain 2535, S. rouxii strain 2531 and Saccharomyces ludwigii strain 3447) in Yeast Moldbrothcontaining four different fermentable sugars (glucose, fructose, maltose, or sucrose) were studied. Theaim was to consider the suitability of different strain/sugar treatment...

متن کامل

Proteasome mutants, pre4-2 and ump1-2, suppress the essential function but not the mitochondrial RNase P function of the Saccharomyces cerevisiae gene RPM2.

The Saccharomyces cerevisiae nuclear gene RPM2 encodes a component of the mitochondrial tRNA-processing enzyme RNase P. Cells grown on fermentable carbon sources do not require mitochondrial tRNA processing activity, but still require RPM2, indicating an additional function for the Rpm2 protein. RPM2-null cells arrest after 25 generations on fermentable media. Spontaneous mutations that suppres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 17 23  شماره 

صفحات  -

تاریخ انتشار 1998